INORGANIC COMPOUNDS

Acta Cryst. (1997). C53, 1727-1728

Lithium Vanadium Metasilicate, LiVSi2O6

CHRISTINE SATTO, PATRICE MILLET AND JEAN GALY

Centre d'Elaboration de Matériaux et d'Etudes Structurales, CNRS, 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse CEDEX, France. E-mail: millet@cemes.fr

(Received 8 April 1997; accepted 9 June 1997)

Abstract

The title compound has been synthesized by solidstate reaction. Its structure is isomorphous with those of other lithium pyroxenes and is composed of infinite isolated chains of edge-sharing VO_6 octahedra linked together by corner-sharing SiO_4 tetrahedra. These form a three-dimensional framework within which each Li⁺ ion occupies a highly distorted octahedron.

Comment

The alkali metal pyroxenes denoted $AM^{3+}Si_2O_6$ (A = alkali metal) have been studied for a long time since many of them are naturally occurring minerals (Cameron, Sueno, Prewitt & Papike, 1973). The structures of these compounds are very versatile and can accommodate a wide variety of cations at the M site. Interestingly, the sodium pyroxene family is much larger than the corresponding lithium family; nine sodium compounds have been discovered to date with $M = Al^{3+}$, Fe^{3+} , Cr3+, Ga3+, V3+, Mn3+, Ti3+, Sc3+ or In3+ (Ohashi, Osawa & Tsukimura, 1987). For the lithium family, the following compounds have been isolated: LiAlSi2O6 and LiFeSi2O6 (Clark, Appleman & Papike, 1969), LiScSi₂O₆ (Hawthorne & Grundy, 1977), LiInSi₂O₆ (Grotepass, Behruzi & Hahn, 1983) and LiGaSi2O6 (Sato, Osawa & Ohashi, 1994). We were thus interested in synthesizing further lithium equivalents of the sodium family. We report here the crystal structure of a new lithium pyroxene, LiVSi2O6, synthesized in our laboratory.

This new lithium vanadium(III) metasilicate exhibits the LiAlSi₂O₆ structure. Its framework is composed of infinite isolated chains of edge-sharing VO₆ octahedra linked together by corner-sharing SiO₄ tetrahedra. A polyhedral representation of the structure showing the isolated chains running along the [001] direction is presented in Fig. 1. An *ORTEPII* (Johnson, 1976) view of the unit cell, slightly tilted for clarity, is given in Fig. 2 and shows the atom labelling. Both Li and V occupy the special position 4(e) (0, y, 1/4). The main difference between the structures of the lithium and

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved sodium pyroxenes is related to the alkali metal radius. In lithium compounds, the small Li atom is sixfold coordinated and occupies a highly distorted octahedron (Fig. 3) with two short Li—O bonds of 2.065 (4) Å and two longer ones of 2.444 (4) Å, while for sodium compounds, the Na atom is eightfold coordinated in a very distorted cubic antiprism. The Si atom is located in a slightly distorted tetrahedron (mean Si—O = 1.621 Å), while V^{III} has octahedral coordination with V—O distances in the range 1.920-2.072 Å.

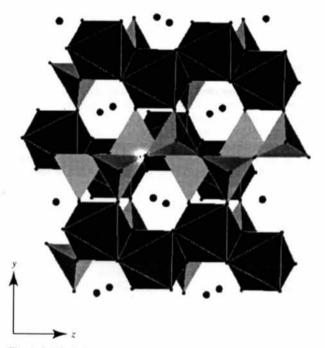


Fig. 1. Polyhedral representation of the $LiVSi_2O_6$ structure down the a^* axis showing the infinite chains of VO₆ octahedra.

Fig. 2. ORTEPII (Johnson, 1976) representation of the structure of LiVSi₂O₆ showing the atom labels. Symmetry codes: (i) -x, -y, -z; (ii) -x, y, $\frac{1}{2} - z$; (iii) x, -y, $\frac{1}{2} - z$; (iv) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (v) x, 1 - y, $z - \frac{1}{2}$. Displacement ellipsoids are plotted at the 90% probability level.

Acta Crystallographica Section C ISSN 0108-2701 © 1997

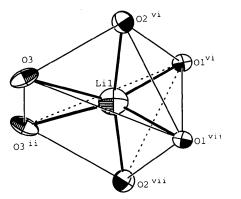


Fig. 3. The lithium coordination polyhedron. Symmetry codes: (ii) -x, y, $\frac{1}{2} - z$; (vi) x, 1 - y, $\frac{1}{2} + z$; (vii) -x, 1 - y, -z. Displacement ellipsoids are plotted at the 90% probability level.

Experimental

Single crystals were obtained by solid-state reaction of a mixture of Li₂SiO₃, SiO₂, V₂O₅ and V₂O₃ in proportions corresponding to the chemical formula Li_{1.6}SiVO₅. The mixture, ground in an agate mortar, was placed in a platinum crucible and heated at 1373 K for 96 h under a primary vacuum. Slow cooling led to the formation of small green crystals. Energy dispersive X-ray analysis (EDX) gave an Si/V molar ratio of 2.

Crystal data

LiVSi ₂ O ₆	Mo $K\alpha$ radiation
$M_r = 210.04$	$\lambda = 0.71069 \text{ Å}$
Monoclinic	Cell parameters from 25
C2/c	reflections
a = 9.634 (4) Å	$\theta = 3.25 - 19.30^{\circ}$
b = 8.586(2) Å	$\mu = 2.84 \text{ mm}^{-1}$
c = 5.304 (2) Å	T = 293 (2) K
$\beta = 109.69(3)^{\circ}$	Parallelepiped
V = 413.1 (2) Å ³	$0.12\times0.06\times0.04$ mm
Z = 4	Translucent pale green
$D_x = 3.38 \text{ Mg m}^{-3}$	
D_m not measured	
Data collection	

427 reflections with

6 standard reflections

 $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.58 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction:

Larson (1970)

frequency: 3 every 60 min

intensity decay: 0.4%

 $I > 3\sigma(I)$

 $\theta_{\text{max}} = 28^{\circ}$ $h = -12 \rightarrow 11$ $k = 0 \rightarrow 11$

 $R_{\rm int} = 0.01$

 $l = 0 \rightarrow 6$

Enraf-Nonius CAD-4
diffractometer
$$2\theta/\omega$$
 scans
Absorption correction:
 ψ scan (North, Phillips
& Mathews, 1968)
 $T_{min} = 0.786, T_{max} = 0.893$
1190 measured reflections
481 independent reflections

Refinement

48

Refinement on FR = 0.019wR = 0.016S = 1.078

427 reflections 48 parameters Weights: Chebychev polynomial (Carruthers & Watkin, 1979) $(\Delta/\sigma)_{\rm max} = 0.0005$

Extinction coefficient: 4.7 (8) Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters (Å)

V101	2.067(1)	Si1-O3 ^m	1.631(1)
V1-01	2.072(1)	Lil—Ol ^w	2.065 (4)
V1O2	1.920(1)	Li1-O2"	2.184(1)
Si1-O1 ⁱⁱ	1.634(1)	Li1—O3	2.444 (4)
Sil—O2	1.593(1)	$V1 \cdots V1^{i}$	3.105(1)
Si1-03	1.625(1)	Sil+++Sil ¹	3.075 (1)

Symmetry codes: (i) -x, -y, -z; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $x, 1-y, z-\frac{1}{2}$; (iv) $x, 1 - y, \frac{1}{2} + z$.

The V1, Si1 and O1 atoms were localized by the Patterson technique and the other atoms were localized from a series of difference Fourier maps and refinements (Watkin, Carruthers & Betteridge, 1985).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: CRYSTALS (Watkin, Carruthers & Betteridge, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: CRYSTALS. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CRYSTALS.

The authors would like to thank Pierre Baules for his help with X-ray data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1217). Services for accessing these data are described at the back of the journal.

References

- Cameron, M., Sueno, S., Prewitt, C. T. & Papike, J. J. (1973). Am. Mineral. 58, 594-618.
- Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
- Clark, J. R., Appleman, D. E. & Papike, J. J. (1969). Mineral. Soc. Am. Spec. Pap. 2, 31-50.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Grotepass, M., Behruzi, M. & Hahn, T. (1983). Z. Kristallogr. 162, 90-91

Hawthorne, F. C. & Grundy, H. D. (1977). Can. Mineral. 15, 50-58. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Ohashi, H., Osawa, T. & Tsukimura, K. (1987). Acta Cryst. C43, 605-607.

Sato, A., Osawa, T. & Ohashi, H. (1994). Acta Cryst. C50, 487-488. Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.